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Chapter 1 

Introduction 

An analysis is developed for predicting the electromagnetic fields (EM) 

which are scattered from a 3-dimensional (3-D) perfectly conducting S- 

shaped open-ended semi-infinite waveguide cavity with a planar interior 

termination when it is illuminated by an external plane wave. The analysis 

is based on a hybrid asymptotic modal approach which has been discussed 

extensively in [1,2,3,4]. 

Briefly, this hybrid asymptotic-modal, or more simply the hybrid modal 

approach, models the S-shaped rectangular cavity by smoothly joining to- 

gether straight and annular rectangular waveguide sections as shown in Fig- 

ure 1.1. The scattering matrices which describe the reflection and transmis- 

sion coefficients of the waveguide modes reflected and transmitted at each 

junction between the different waveguide sections, as well at the scattering 

from the edges at the open end are found via asymptotic high frequency 

approximations such as the geometrical and physical theories of diffrac- 

tion used in conjunction with the equivalent current method. The multiple 

wave interactions between the various waveguide sections can be accounted 

for in a straightforward fashion, in terms of these junction scattering (re- 

flection and transmission) matrices, via the self-consistent multiple scat- 

tering method [1,2,3,4]. It is noted that the asymptotic high frequency 

1 
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Figure 1.1: S-shaped cavity with rectangular cross-section formed by joining 
straight and annular waveguide sections. 
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based approach is far more efficient for calculating the modal reflection 

and transmission coefficient matrices for the waveguide junctions than is 

the classical mode matching technique, as the latter requires a numerical 

matrix inversion making it cumbersome and inefficient. Furthermore, these 

modal coefficients obtained via asymptotic high frequency approximations 

generally have a relatively simple form thereby lending physical insight into 

the modal reflection and transmission process. It is the hybrid combination 

of high frequency and modal techniques that makes the present approach 

a hybrid asymptotic-modal approach. 

The modes in the straight and annular rectangular waveguide sections 

are known analytically, and the decomposition of these modal fields into 

their corresponding equivalent sets of modal rays can be performed easily. 

However, consistent with some previous experience [l], it is seen that the re- 

flection coefficient matrix elements are negligible in comparison to the trans- 

mission coefficient matrix elements characterizing the smooth junctions be- 

tween the straight and annular waveguide sections. Hence, it is found that 

the modal reflection effects can be ignored in this analysis thereby requiring 

one to essentially retain only the modal transmission matrix. 

It is noted that in this multiple scattering method, the total scattered 

field consists of a superposition of three contributions, namely: 

(i) contribution from the diffraction of the incident wave by the edge at 

the open end; 

(ii) contribution from the scattering by the interior termination, which 

arises froin part of the incident energy which couples via the open end into 

the S-duct (or cavity) and then reflects from the termination to partly ra- 

diate out through the open end. The remaining energy is scattered back 

into the cavity to again reflect from the termination, and so on. Since 

the reflection from the planar perfectly-conducting termination is generally 

3 



more significant than the reflection back into the cavity from the open end, 

the multiple wave interactions between the termination and the open end 

may be ignored. Also, if the reflection from the termination can be made 

small by making it an appropriate planar dielectric termination (say), then 

the interactions between the open end and the low reflection type termina- 

tion can again be ignored! While the reflections of waves at each junction 

between the waveguide sections can contribute to the net scattering from 

the interior, this effect is negligible in comparison to the other effects as 

mentioned earlier, and it is therefore ignored making the only contribution 

to the scattering from the interior of the cavity as being due to the termi- 

nation. Nevertheless, it is noted that any of these effects which have been 

ignored here can be put back directly via the multiple scattering method 

[1,2,3,4], if it is so desired; 

(iii) contribution from the scattering by any other external features of 

the S-duct. This effect is not of concern to the present work and it will 

therefore not be included. 

Since the diffraction from the open end and the modal reflection from 

the interior planar termination have already been found for the rectangu- 

lar waveguide case, and the corresponding scattering matrices have been 

given explicitly for these two junctions in [2,4], it only remains to find the 

modal transmission coefficient scattering matrix for the junction between 

a straight and annular rectangular waveguide section. Before finding the 

latter, the general formulation for the total scattered field in terms of the 

multiple scattering method is first given in Chapter 2. This multiple scat- 

tering method directly employs the scattering matrix for the open end, the 

transmission matrices for the junction between straight and annular waveg- 

uide sections, and the reflection matrix for the planar interior termination 

[1,2,3,4]. The details involved in the development of the modal transmis- 
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sion (scattering) matrix for the junction between a straight and annular 

waveguide section are then presented in Chapter 3. Finally, the results for 

the open end and the termination scattering matrices are combined with 

the junction transmission scattering matrix developed in Chapter 3, in ac- 

cordance with the formulation given in Chapter 2 for the total scattered 

field; the numerical results based on this total scattered field are presented 

in Chapter 4. An ejwt time convention is assumed and suppressed in the 

following analysis. 

5 



Chapter 2 

Forrnulat ion Using the 
Self-Consistent Multiple 
Scattering Method 

As mentioned in Chapter 1, an incident plane wave excites the fields inside 

the duct configuration as shown in Figure 1.1. These fields can be expanded 

into the natural waveguide modes of each uniform section. Transmission 

and reflection of waves at a junction as well as propagation through a 

given waveguide section are all described in terms of reflection, transmission 

and propagation matrices. The elements of these matrices are found us- 

ing asymptotic high frequency approximations such as the geometrical and 

physical theories of diffraction in conjunction with the equivalent current 

method. The multiple wave interactions between the different junctions 

can be accounted for using the self-consistent Multiple Scattering Matrix 

(MSM) formulation [1,2,3,4] which makes use of these reflection, transmis- 

sion and propagation matrices. 

As a quick review of the MSM formulation, consider a a plane wave 

incident on an open ended parallel plate duct as shown in Figure 2(a). 

This 2-D scattering example is considered due to its simplicity in geometry 

and in formulation. The MSM result obtained can then be extended to 

a rectangular S-shaped duct as will be shown later in this chapter. The 
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scattering matrices involved in a rectangular duct are more complex than 

those in a parallel plate duct. Reference [2] gives a detailed discussion and 

derivations of these scattering matrices. For the 2-D scattering example, 

let the symbol U be the i-directed E-field of the TE case and the H-field 

of the TM case, respectively; this incident field can be written as 

(2.1) j k ( o  cos@+ysin8) dine  = iUinee- 

Also, let U" refer to the field scattered into the exterior region by the waveg- 

uide cavity. Thus, U' represents the complex amplitude of the scattered 

electric field = iE" for the TE  case and the scattered magnetic field 

H" = iH' for the TM case. Let 
-4 

where U: is the component of the field scattered into the exterior by just 

the edges at the open end, and U: is the contribution to the field scattered 

into the exterior through reflection from the interior termination. Also, U,.,, 

is the contribution to the scattered field due to any other external features 

of the duct configuration. This contribution is not of interest here and thus 

is neglected. In the far zone of the open end of the cavity, one can write 

where (.,e) are shown in Figure 2.l(a), and fc,h and ge,h are unknown 

pattern functions yet to be found. 

From the self-consistent multiple scatkring method [1,2,3,4], one can 

express the total far zone U' (minus U,.,,) in terms of the generalized scat- 

tering matrices introduced as 

7 
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Figure 2.1 : 2-dimensional parallel and s-shaped duct models 
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In (2.5)) the matrix [PI denotes the phase delay of the modes as they 

propagate between junctions A and B; this [PI is a diagonal matrix. The 

[FBI in (2.5) denotes the total reflection coefficient scattering matrix at  

junction B which describes the modes reflected back into region 2 due to 

modes incident at B from region 2. 

Note that if there was no termination, then [FBI would be a null matrix 

and the scattered field U’ in (2.5) would come only from the diffraction of 

the incident wave at the front edges as described by [S11]. Therefore, [SI11 is 

the only scattering matrix present when there are no internal discontinuities 

or terminations within the cavity. From (2.3),(2.4) and (2.5)) one obtains 

that 

where the matrix [Sll] has only a single element ,511; also, it follows from 

(2.2) that 

If the duct configuration is changed from a parallel plate section as 

shown in Figure 2.l(a) to an S-shaped duct section as shown in Figure 

2.l(b), the MSM result of (2.5) is modified by simply replacing the termi- 

nation reflection scattering matrix,[F~],  with an effective scattering matrix, 

[Sr]. Since the front section of an S-shaped duct is a parallel plate section, 

it would be useful to define an effective scattering matrix, [SF], at the end of 

the first section to account for all of the rest of the duct sections including 

the final termination. The MSM results of (2.5) can then be applied to find 

the scattered field of an S-shaped duct in terms of this [Sr]. For a smoothly 

joined junction, it has been shown that the modal reflection coefficients are 

negligible compared to the modal transmission coefficients [l]. Thus the 
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scattering matrix,[Sr] at junction 1 due to sections 2,3,4,5 can be written 

as : 

with 

and [AIt is the tr.anspose of [A]. [A] is a matrix which traces the modal 

field structure from junction 1 to the termination. [ r ~ ]  is the reflection 

coefficient scattering matrix due to the termination, and [P;] is the propa- 

gation phase matrix due to section i. [Tj] is the transmission matrix at the 

junction between sections i and j. The subscript of [Zj] means propagation 

is from duct section i to section j .  It is also noted that [A] in (2.9) gives a 

physical insight of how modes propagate in the duct structure. (2.9) should 

be read from right to left. First, the modal fields pass through a junction 

from section 1 to 2. The change in the modal field structure is accounted 

for by the modal transmission matrix [T4.  Next, the modes propagate 

through section 2, and their phase delay results in a [P2]. A subsequent 

transmission through a junction gives another transmission matrix [T23] and 

so on, until the modal fields hit the termination. 

The MSM formulation in (2.5) and the effective scattering matrix in 

(2.8) can also be applied to a 3-dimensional S-shaped duct. In Reference 

[2], an analysis has been developed for predicting the near and far zone fields 

scattered by a rectangular waveguide terminated with a planar impedance 

surface. However, if one uses the effective scattering matrix [Sr] due to 

a succession of duct sections as in (2.8) to replace the termination scat- 

tering matrix, [FBI, one essentially gets the scattering patterns due to a 

3-dimensional S-shaped duct just as for the 2-dimensional case described 

above. The solution as proposed in [2] can be used to find the scattered 
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field [E"] which is represented by a matrix equation as follows 

with the scattering matrices defined as 

external source to modal excitations, 

[Szl] coupling matrix from an 

[Slz] radiation matrix from modal fields to an external field point, 

[Sz2] internal reflection matrix at the waveguide aperture, 

[PI the modal propagation phase delay matrix, 

[E'] incident field of the external source, and 

[Sr] the effective reflection matrix at the end of the first section. 

All these matrices are well defined in [2] except the effective scattering 

matrix [Sr] which is defined in Equations (2.8) and (2.9). The transmission 

matrix, [ T , j ]  as appeared in (2.9), will be discussed in the next chapter. 

[E"] and [E i ]  are column matrices with three elements representing the 

three vector components of 2" and 6, respectively. Once [Sr] is found, 

Equation (2.10) can be used to simulate farfield patterns which will be the 

topic of Chapter 4. 
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Chapter 3 

Modal Transmission 
Coefficient for the Junction 
Between a Straight and an 
Annular Rectangular 
Waveguide Section 

To determine the junction transmission matrix, the modal fields of the 

straight and annular rectangular waveguides must be defined first; this is 

done in sections 3.1 and 3.2. The junction scattering matrix is then given 

in 3.3. 

3.1 Modal Field Structure of a Straight Rect- 
angular Waveguide 

Figure 3.1 shows the geometry of the straight rectangular duct section. The 

modal electric field I?* within this straight rectangular waveguide region 

( z  < 0) may be represented in the usual manner [1,2,3,4] as: 

n m L  

Here, c: and cm denote the transverse (to z )  electric vector mode func- 

tions for the TE,,, and TM,, modes, respectively (where T E  and T M  

12 
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Figure 3.1: Geometry of the straight rectangular waveguide section. 

are with respect to the %direction). Likewise, the pim and pLm denote 

the propagating constants of the TE,, and TM,, modes, respectively. It 

is noted that ernm is the 2-component of the TM,, modal electric field. 

The superscripts + and - in Equation (3.1) refer to modes propagating 

in the +i and -2 directions, and the superscript T implies that the fields 

pertain to a straight rectangular waveguide section. It is also convenient to 

define the magnetic field I?* in the straight rectangular waveguide region 

following the representation for the electric field I?* in (3.1); thus 

The A:$ and Bif, in (3.1) and (3.2) are the modal coefficients which can 

be determined once the excitation is known. The Qk and are the 

magnetic vector mode functions for the TEnm modes, whereas him is the 

magnetic vector mode function for the TM,, modes. Table 3.1 gives the 

explicit forms of the propagating mode functions in a straight rectangular 

- 

waveguide. For the derivation and explicit expressions for these modes, one 
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can refer to a well known text such as [5 ] .  

3.2 Modal Field Structure of an Annular Duct 

The modal fields for an annular duct also of rectangular cross-section, which 

is shown in Figure 3.2, can be established in a similar manner. Now, since 

the propagation is along the directions, and 6 is not a constant vector, 

the fields I?"* and Z?a* are initially defined as having components trans- 

verse to i and along 2, respectively. Afterwards, these modal fields can be 

rearranged to give a more convenient set of modes; i.e., transverse to and 

axial to 4, since 6 is the propagating direction. The modal electric field 

L 

and the magnetic field I?"* can then be written as: 

(3.3) 

P P  

(3.4) 

Again, E;: and 2; denote the transverse (to 4) electric vector mode 

functions for the TEPP and T M ,  modes ,and the 5;; and &;q denote the 

transverse (to 4) magnetic vector mode functions for the TE, and TM,, 

respectively. The superscript a implies that the fields pertain in the annular 

duct section. The modal field structure of an annular duct will be discussed 

in more detail in the next section. 
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H 

Figure 3.2: Geometry of the annular waveguide section. 

3.2.1 Modal Field Structure Calculations 

In an annular waveguide (as shown in Figure 3.2), there are always a finite 

number of propagating modes. These modes can be classified into sets of 

TM to z or TE to z,  where the former set of modes has no H ,  field and 

the latter set of modes has no E, field. A combination of these two sets of 

modes gives a complete field structure inside the waveguide. In addition to 

these propagating modes, there are also an infinite number of evanescent 

modes. These evanescent modes decay exponentially along the waveguide 

axis. For the present analysis, the effects of these evanescent modes are 

ignored. 

T M  (transverse to z )  modes: 

The T M ,  fields can be found via a i-directed magnetic vector potential, 

x = Qi. The magnetic vector potential satisfies the wave equation 

15 



where k is the free space wave number, 2n/A But, since i is a constant 

vector, the above equation can be reduced to a scalar form as: 

( V 2 +  k') 9 = 0. (3.6) 

This equation in cylindrical coordinates can be rewritten as: 

The electric and magnetic fields are related to \E as [6]: 

(3.7) 

The boundary conditions used to find \k are that all tangential electric field 

components are zero on the walls of the guide. In order to construct \E, let 

the separation of variables suggest a solution of the form: 

Substituting Equation (3.9) into Equation (3.7) and introducing two sep- 

aration constants pl and up, one will get three differential equations as 

follows: 

The solutions to Equation (3.11) are 

where modes propagate in the *t$ directions. 
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The solution to Equation (3.10) is 

Z ( Z )  = Acosplz + Bsinplz. 

Since E+ = >-- jk p a+az ”’ ’ the boundary condition 

E& = O;r = I )  = 0 

(3.14) 

(3.15) 

iinylies 

--(r = 0;s  = I )  = 0. (3.16) a% 
Therefore, from (3.14) and (3.16), B = 0 and pl = 7. Hence, Z(z)  can be 

rewritten as 

Z(2 )  = A c o s - % , p = o , l , ~ ~ ~  PT (3.17) 
I 

Likewise, (3.12) is a Bessel’s equation and has solutions R(p) which can be 

linear combinations of k c p )  and HL:)( k ,p )  with 

kc = /q (3.18) 

where HL:)( k , p )  and HL:)( k ,p )  are Hankel functions of the first and second 

kinds, respectively, of order un and argument k,p. From the boundary 

condition on the i directed I? field, one obtains 

E,(p = a ; p  = b )  = 0. (3.19) 

Next, one can utilize (3.19) and (3.8) to obtain 

- - 5 [ k 2  - (7)2] * ( p  = a ; p  = b )  = 0. 
j k  

(3.20) 

Now R(p)  can be constructed via (3.20) as 

17 



Note that R(b) = 0 has been employed. To satisfy \k (p  = u )  = 0, the 

eigenvalues vq can be found numerically by solving the equation 

R(u) = 0. (3.22) 

Since R(p) in (3.21) depends on p and q, R(p)  should be rewritten as &(p) .  

Consequently, the eigenvalues vq found from (3.22) should be dependent on 

p and hence are renamed as v,. 

Using linear combinations of these solutions and enforcing the boundary 

conditions gives the complete solution for the magnetic potential \k which 

can be written as 

(3.23) 

where C& is related to the modal coefficients. 

The electric and magnetic fields inside the waveguide thus can be found 

from Equation (3.8). In addition, these modal fields can be put in a form 

to fit Equations (3.3) and (3.4). For example, the TM, electric modal field 

I?:* can be written as: 

The subscript e means the field is T M  or e type. Also by definition i$, are 

field components transverse to #, thus from (3.8). one gets 

(3.25) 

E$q, EZq and E$, are found from (3.8) and (3.23) which are summarized 

in (3.28-3.30). 
-4 

The TM,, magnetic modal field H,“* can be put in a similar form, from 

Equation (3.4): 
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where 

The individual electric and magnetic field components can be summa- 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

The normalization constant A, is found by normalizing the power car- 

ried by the pqth mode to unity. This is done by integrating the Poynting 

vector over a cross section of the guide and setting this equal to unity, 

J L  (G x L;,) -4dS  = 1. (3.34) 

Substituting (3.25) and (3.27) into (3.34), A,, can be found as 

where 

& = {  2 , p = o  
1 , P # O .  

(3.36) 

TE (transverse to  z )  modes: 

The derivation for the TE, fields is very sinlilar to that for the T M ,  fields. 

They can be found as follows: 
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Let = \ki be the electric vector potential satisfying the wave equation 

( V 2 + k 2 ) $  = 0 (3.37) 

which can be reduced to a scalar form as in Equation (3.6). The electric 

and magnetic fields are related to this potential as [6] 

E - 189 H - 1 8'9 
P -  p 8 4  P -  j kZ . ,Bpaz  

(3.38) 1 1 -  E4 = H4 = jp-j--8flBr 
P I E, = 0 H ,  = & ($ + k 2 )  \E. 

Again, using the boundary conditions that electric field components 

are zero on the walls, these field components can be put in a form as in 

Equat,ions (3.3) and (3.4), such that 

and from (3.38) one gets: 

The subscript h in (3.39) and the same superscript in (3.40) means the field 

is T E  or h type. Furthermore, E Z  and E E  are summarized in (3.43) and 

(3.44), respectively. It is similar for the TE, case 

where 

The individual field components can be summarized as follows: 

(3.43) 
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E!: = 0 

where 

2 

kc = \/k2 - (7) . 
The normalizing constant, B,, is 

1 
BPQ = {m.. 

with Rp,(p) defined in (3.49). 
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(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 



3.3 Junction Transmission Matrix 

In this section, the junction transmission matrix from a rectangular waveg- 

uide to an annular waveguide is discussed. When the modal fields are 

transnlitted from a rectangular duct section to an annular duct section, the 

field representation must be transformed from rectangular modes to annu- 

lar modes. Since both of these modal field structures are well-defined, the 

question left is t o  find the suitable excitation coefficients for the transmit- 

ted annular modes. A junction transmission matrix performs this function; 

it finds the annular transmitted fields once the incident rectangular modal 

fields are known. This transmission matrix is obtained by employing the 

incident modal fields to define the equivalent surface current at the junc- 

tion aperture. T h e  latter equivalent sources then generate the transmitted 

annular fields. 

It is noted that the modal coefficients An$ and BAL for the straight 

rectangular guide as in (3.1-2), and C';: together with D g  for the annular 

guide as in (3.3-4) can be represented as column vectors by 

T E  Rectangular Guide Modes: 

T M  Rectangular Guide Modes: 

T E  Annular Guide Modes: 

T M  Annular Guide Modes: 

If the rectangular modal fields are 

junction, the modal coefficients for 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

incident on a rectangular/annular duct 

the transmitted fields in the annular re- 
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gion are related to the incident modal coefficients by a transmission matrix, 

T12, as 

P 1 2 1  

where the subscript of [T12] means propagation is from duct section 1 to 

duct section 2. In this case, section 1 is a straight rectangular section and 

section 2 is an annular duct section. Futhermore, the meaning of is 

the following. A rectangular TM,, (or e type) mode with modal amplitude 

BLk which is incident at the junction is partly transformed into an annular 

TE, (or h type) mode with modal amplitude as . 

(3.57) 

and the rest is transformed into an annular T M ,  mode with modal co- 

efficient o;,'. The + sign in the above equation defines the propagating 

direction towards the termination as indicated in Figure 1.1. When prop- 

agation reverses direction, the modal fields from an annular duct would be 

incident on the junction. The new transmission matrix [Tzl] can be shown 

by reciprocity to be the transpose of the transmission matrix [ T 4 .  This 

relationship can be written as: 

IT211 = [Tl2lt (3.58) 

where t is a transpose operator. 

The junction transmission matrix ITl2] as shown in Equation (3.56) has 

four submatrices. Each of these submatrices carries a different function. 

For example, the submatrix transforms the incident TMnm rectan- 

gular modes into the transmitted TE,, annular modes. These submatrix 

elements can be found by employing the incident modal fields to define 
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equivalent incident electric and magnetic surface currents in the aperture 

formed by the junction via the Kirchhoff approximation and then evaluat- 

ing the amplitudes of the transmitted modes which are produced by those 

equivalent currents as follows [1,2]: 

where I?: is the transmitted modal excitation which is CA+ or D z  for 

TEPP or TMpq transmitted, respectively. E&+ and g&+ are the transmitted 

modal fields which can be represented by Equations (3.28) to (3.33) for 

TM, transmitted and by Equatioiis (3.43) to (3.48) for T E ,  transmitted. 

These fields can be expressed as 

-0 

for TM,, transnlitted: 

(3.60) 

(3.61) 

and for TE,  transmitted: 

Note that the phase factor e-j"p94 has been suppressed because its effect 

will be included later in the propagating modal phase path delay matrix 

[PI. Furthermore the expressions for the annular modal fields components 

ELq, EAq, E:,, H,'w, HA and H:pq are summarized in Equations (3.28) 

to (3.33) for the TM case and in Equations (3.43) to (3.48) for the TE 
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case. f a n d  A? in (3.59) are the equivalent incident electric and magnetic 

currents, respectively. They can be written as 

4 

J = 6 x 3  

A2 = Z x i i  
(3.64) 

(3.65) 

where 6 is the unit aperture normal vector pointing in the direction of 

propagation of the incident modal field. The 2 and l? in (3.64) and (3.65) 

are found via the Kirchhoff method as mentioned earlier; hence, I? and 3 
are assumed to be given by the TM and TE incident fields as follows: 

(1) for TM,, incident: 

(3.66) 

(3.67) 

and (2) for TE,, incident: 

-# (3.68) E = e,, 

r' (3.69) H = -h~,+ihzn,. 

-4 

4 - 

The field components for both the TE,, and TM,,, cases are summarized 

in Table 3.1. 

Each of the four submatrices can be represented by a combination of 

two sets of Equations. The first set of equations is chosen either from (3.60) 

and (3.61) for the transmitted annular TM,, fields or from (3.62) and (3.63) 

for the transmitted annular TE, fields. The second set of equations com- 

prises either of (3.66) and (3.67) for the incident rectangular TM,, mode 

or of (3.68) and (3.69) for the incident rectangular TE,, mode. For ex- 

ample, substituting the first set of Equations (3.60), (3.61) and the second 

set (3.68), (3.69) into Equation (3.59), one gets the transmission submatrix 

r&,, which transforms a rectangular TE,, mode into an annular TM, 
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mode. The four possible combinations of these two sets of equations gener- 

ate the four submatrices in the transnlission matrix. The formulations for 

these submatrices are summarized in Table 3.2. 

There is one junction transmission matrix for each junction in the duct 

structure as shown in Figure 1.1. However some of the junction matrices 

are equal due to symmetry. These relationships are as follows: 

(3.70) 

and, if r2 = r4 in Figure 1.1, then 

There is a reversal of coordinate systems at the junctions between sec- 

tions 3 and 4. Therefore, [T46] # [T43]. However, it can be shown that there 

is a simple relationship between the elements of the matrices   TI^] and (T34]. 

For both the rectangular TE and TM cases, this relationship is given by 

[T34]nm = -( -1)"[T12]nm (3.72) 

where nm is the rectangular mode number in the width (2-direction) and 

in the height (y-direction) dimensions, respectively. Due to the symmetry 

relations of the transmission matrices, if the inner radius of the curved 

sections are equal, i.e., r2 = r4, then only [TI2] is needed to be evaluated in 

order to find [A] in (2.9). 
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Table 3.1: Properties of Modes in Rectangular Waveguide 

TEnm TMnm 
nz+m2 

JPnm h, = nnm Ynm 7 -~ J- COS nax COS mby 0 

n’,+m: sin nax sin mby e2 = o  -Nnm jpnm 

h, 

h, 

= NnmYnmn, sin naX COS mby 

= NnmYnmmb COS n,x sin mby 

- Nnm Ynmmb sin n,x cos mby 

NnmYnmn, COS n,x sin mby 

- - nnmmb cos n,x sin mby Nnmn, cos n,x sin mby e, 

ey 

Ynm = Y o P n m / k  YoklPnm 

= -Nnmn, sin n,x cos mby Nnmmb sin n,X COS mby 

o <  x < a ,  0 < y < 6 

Note that for both modes: 

-1 
Nnm = 4 [ ~ C , ~ C - Y ~ ~ U ~ ( T I . ~  + mz)] 2 

L 
Prim 

na = nn/a 

= [ k 2  - n: - mil2 

mb =mlr/b 
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Table 3.2: Transmission Matrix [TI2] from a Rectangular Duct to an An- 
nular Duct 

(1) TMnm (rectangular) modes in, T M ,  (annular) modes out 

i f p = r n  
and = 0 i f p # m  

n = 1,2 ,3 ,  ... 
m = 1,2 ,3 ,  ... with 

p = 0,1 ,2 ,  ... 
q = 1,2 ,3 ,  ... and { 

Note: Nnm, Ynm, Mb and N, are defined in Table 4.1. v,, R,, A, are 
defined in Equations (3.22), (3.21), (3.35) respectively. p and 2 are related 
by 
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Table 3.2 continues 

(2) TM,, (rectangular) modes in, TE, (annular) modes out 

i f p = m  

and = 0 i f p f m  

n = 1 , 2 ) 3 , . . ,  
m = 1)2 )3 )  ... with 

p =  1 , 2 ) 3  )... 
q = 1 , 2 ) 3  )... and { 

Bpq are defined in Equation (3.51). R,,R6, and vw are defined in the 

section of T E  annular modes. 
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Table 3.2 continues 

(3) TEnm (rectangular) modes in, TMpq (annular) modes out 

i f p = m  

and = 0 if p # nz 

n = 0 7 1 , 2 , 3 7 . . .  
m = 0 7 1 , 2 7 3 , . . .  

p =  0 , 1 , 2 , 3 7 . . .  
q = 1,2,3,  ... 

n = m = 0 excepted 

2, p = m = O  
1 ,  p = m # O .  and c = 

AW,&,RLq and vw are defined in the section of T M  annular modes. 
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Table 3.2 continues 

(4) TEnm (rectangular) modes in, TE, (annular) modes out 

i f p = m  

and = 0 i f p # m  

n = 0 , 1 , 2 , 3  ,... 
m = 0,1 ,2 ,3  ,... 
n = m = 0 excepted 
p = 1,2,3,  ... i q =  1,2,3,  ... 

with 

Bpq are defined in Equation (3.51). R,,,RL and v, are defined in the 

section of T E  annular modes. 
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Chapter 4 

Results and Discussion 

In this section the fields backscattered from a rectangular, S-shaped duct 

will Le presented in the form of backscatter vs. aspect angle plots. The 

geometries of an S-shaped duct and a straight duct with rectangular cross- 

sections are illustrated in Figures 1.1 and 3.1, respectively. The scattering 

effects included in this analysis are the internal reflection at the duct cavity 

termination and the external rim diffraction at the duct opening. The 

structural scattering due the exterior duct surface is not included. The 

eniphasis of this section will be focused on comparing tlie backscattered 

fields of an S-shaped duct with those of a straight duct. It is expected 

that the backscattered patterns will be different because tlie curvature of 

an S-shaped duct redistributes the coupled energy in a way that differs 

from a straight duct. Since both the straight and S-shaped ducts in this 

analysis are perfectly conducting, none of the energy coupled into the duct 

is lost. Although the backscattered pattern will change depending on the 

duct geometry, the average dB level will remain about the same. 

First, as a check to the analysis of an S-shaped duct, the backscattered 

patterns of a 5 section S-shaped duct is obtained in the 2 - z plane. As 

shown in Figure 4.1, the lengths of the last 4 sections of this S-shaped duct 

approach zero. In other words, the geometry of this S-shaped duct is no 
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different than a straight duct. The height of this duct is 6 inches and the 

width is 4 inches. At 10 GHz, this translates to 99 propagating modes in the 

rectangular section and 105 modes in the annular section. The backscat- 

tered E-theta plot and the E-phi plot are shown in Figures 4.1 and 4.2, 

respectively. The corresponding patterns from a straight duct are shown in 

Figures 4.3 and 4.4. Comparing the backscattered E-theta patterns of Fig- 

ures 4.1 and 4.3 and comparing the backscattered E-phi patterns of Figures 

4.2 and 4.4, one finds that they are virtually the same. Consequently, this 

analysis successfully reduces a more complicated S-shaped duct geometry 

into a straight duct geometry as far as backscatter patterns are concerned. 

Figures 4.5 and 4.6 show the backscattered patterns of an S-shaped duct 

in the t - z plane. Figure 4.5 also defines the geometry of this S-shaped 

duct. Comparing these two patterns with those due to a straight duct as 

shown in Figures 4.3 and 4.4, one finds that the S-shaped duct changes the 

pattern shape. The coupled energy is redistributed after it radiates back 

out although the average dB level remains about the same. Moreover, in the 

t - z plane, the S-shaped duct does not have symmetry in geometry as the 

straight duct does. Thus the backscattered patterns of the S-shaped duct 

in this plane are not symmetric, contrary to the patterns due to a straight 

duct; these effects can be seen from Figures 4.3 to 4.7. The backscattered E- 

theta field of this S-shaped duct, in Figure 4.5, also compares very well with 

the T M  backscatter of a 2-dimensional S-shaped duct as shown in Figure 

4.7. This is expected because only the pattern in the principal (horizontal) 

plane of this 3-dimensional duct is considered. The field patterns due to 

the other principal (vertical or y - z )  plane is shown in Figure 4.8. It can be 

seen that in this plane, the pattern is symmetric because of the symmetry 

of the structure. 

Figures 4.9 to 4.11 show the backscattered patterns of the S-shaped duct 
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due to different conical pattern cuts. The theta angle is fixed at 10,30 and 

45 degrees for Figures 4.9,4.10 and 4.11 respectively. The phi angle changes 

from 0 to 360 degrees for each of these figures. It can be seen that the dB 

levels of these plots are about the same. However, the larger the angle 

theta, the more the pattern fluctuates. Such characteristics can also be 

seen in Figure 4.6 which shows nine conical pattern cuts at every 5 degrees 

from 5 to 45 degrees. Again, this is expected because a small theta angle 

leads to a small conical pattern variation in circumference. For example, 

in the extreme case, if theta is zero, the whole conical pattern region will 

be reduced to a single direction. As a result, a conical pattern with a small 

theta will not be influenced as much by the radiation from many dominant 

higher order modes as a conical pattern with a larger theta. 
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Figure 4.1: Geometry and backscattered E-theta plot of an S-shaped duct. 
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the last 4 sections 
approach to zero. 
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Figure 4.2: Geometry and backscattered E-phi plot of an S-shaped duct. 
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Figure 4.3: Geometry and backscattered E-theta plot of a straight duct. 
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Figure 4.4: Geometry and backscattered E-phi plot of straight duct. 
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Figure 4.5: Geometry and backscattered E-theta plot of an S-shaped duct. 
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Figure 4.6: Geometry and backscattered E-phi plot of an S-shaped duct. 
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Figure 4.7: Geometry 
duct at 10 Ghz. 

and TM backscatter plot 
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Figure 4.8: Backscattered fields at y - z plane. 
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Figure 4.9: Conical pattern cut at 8 = 10". 
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Figure 4.10: Conical pattern cut at 8 = 30". 
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